Trên tập hợp các số phức xét phương trình z1=z2

Phương trình bậc hai có nghiệm phức \({z_1}\) thì cũng nhận nghiệm phức \({z_2} = \overline {{z_1}} \).

Tìm điều kiện để phương trình có hai nghiệm phức.

Lời giải của GV Vungoi.vn

Đặt \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (*).

TH1: \({z_0}\) là nghiệm thực \( \Rightarrow \left| {{z_0}} \right| = 8 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 8\\{z_0} =  - 8\end{array} \right.\).

+ Nếu \({z_0} = 8\) thay vào (*)

\(\begin{array}{l} \Rightarrow {8^2} - 16\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} - 16m + 48 = 0\\ \Leftrightarrow \left[ \begin{array}{l}m= 12\\m= 4\end{array} \right.\end{array}\)

\( \Rightarrow \) Có 2 giá trị thỏa mãn.

+ Nếu \({z_0} =  - 8\) thay vào (*)

\(\begin{array}{l} \Rightarrow 64 + 16\left( {m + 1} \right) + {m^2} = 0\\ \Leftrightarrow {m^2} + 16m + 80 = 0\end{array}\)

\( \Rightarrow \) Vô nghiệm.

TH2: \({z_0}\) là nghiệm có chứa \(i \)\(\Leftrightarrow \Delta ' = {\left( {m + 1} \right)^2} - {m^2} < 0 \Leftrightarrow 2m + 1 < 0 \)\(\Leftrightarrow m <  - \dfrac{1}{2}\).

Theo tính chất của phương trình bậc hai trên tập phức, nếu phương trình (*) có 1 nghiệm phức \({z_0}\) chứa \(i\) thì sẽ có 1 nghiệm phức còn lại là \(\overline {{z_0}} \).

Điều kiện \(\left| {{z_0}} \right| = 8 \Leftrightarrow {\left| {{z_0}} \right|^2} = {8^2} \Leftrightarrow {z_0}.\overline {{z_0}}  = {8^2} \)\(\Leftrightarrow {z_0}.\overline {{z_0}}  = 64\,\,\left( 1 \right)\).

\({z_0}\)\(\overline {{z_0}} \) là 2 nghiệm của phương trình (*), theo định lí Vi-ét ta có: \({z_0}.\overline {{z_0}}  = {m^2}\,\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow {m^2} = 64 \Leftrightarrow m =  \pm 8\).

So sánh điều kiện \(m <  - \dfrac{1}{2} \Rightarrow m =  - 8\).

Vậy tất cả TH1 và TH2 có 3 giá trị của \(m\) thỏa mãn yêu cầu bài toán (\(m = 12 \), \(m = 4 \)\(m =  - 8\)).

Trên tập hợp các số phức, xét phương trình z^2 - 2(m+1)z + m^2=0(m là số thực). Có bao nhiêu giá trị của m để phương trình đó có nghiệm Zo thỏa mãn |Zo|=7 A. 1 B. 4 C. 3 D. 2

  • Câu hỏi:

    Trên tập hợp các số phức, xét phương trình \(z^2-2 m z+8 m-12=0\) (m là tham số thực). có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm phân biệt \(z_1, z_2\) thỏa mãn \(\left|z_1\right|=\left|z_2\right|\)? 

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có \(\Delta’=m^2-8 m+12\).

    Nếu \(\Delta’>0\) thì phương trình có hai nghiệm thực, khi đó \(\left|z_1\right|=\left|z_2\right| \Leftrightarrow z_1=-z_2 \Leftrightarrow z_1+z_2=0 \Leftrightarrow m=0\) (thỏa mãn);

    Nếu \(\Delta'<0\), thì phương trình có hai nghiệm thức khi đó là hai số phức liên hợp nên ta luôn có \(\left|z_1\right|=\left|z_2\right|\), hay \(m^2-8 m+12<0 \Leftrightarrow 2

    Vậy có 4 giá trị nguyên của tham số thỏa mãn.

  • Câu hỏi:
    Trên tập hợp các số phức, xét phương trình \({z^2} + 2az + {b^2} + 2 = 0\) (\(a,\,b\)là các tham số thực). Có bao nhiêu cặp số thực \((a\,;\,b)\) sao cho phương trình đó có hai nghiệm \({z_1},\,{z_2}\) thỏa mãn \({z_1} + 2i{z_2} = 3 + 3i\)?

    A. \(4\).

    B. \(2\).

    C. \(3\).

    D. \(2\).

    LỜI GIẢI CHI TIẾT

    Ta có \(\Delta ‘ = {a^2} – \left( {{b^2} + 2} \right)\) và theo định lí Vi-ét lại có \(\left\{ \begin{array}{l}{z_1} + {z_2} = – 2a\\{z_1}{z_2} = {b^2} + 2\end{array} \right.\).

    TH 1: khi \(\Delta ‘ \ge 0\) thì \({z_1}\), \({z_2}\) là các số thực.

    \({z_1} + 2i{z_2} = 3 + 3i \Rightarrow \left\{ \begin{array}{l}{z_1} = 3\\{z_2} = \frac{3}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = – \frac{1}{2}\left( {{z_1} + {z_2}} \right) = – \frac{9}{4}\\{b^2} = {z_1}{z_2} – 2 = \frac{5}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = – \frac{9}{4};\,b = \frac{{\sqrt {10} }}{2}\,\,\left( {{\rm{tm}}} \right)\\a = – \frac{9}{4};\,b = – \frac{{\sqrt {10} }}{2}\,\left( {{\rm{tm}}} \right)\end{array} \right.\).

    TH 2: khi \(\Delta ‘ < 0\) thì \({z_1}\), \({z_2}\) là các số phức có phần ảo khác 0và \({z_1} = \overline {{z_2}} \).

    Đặt \({z_1} = m + in\) thì \[{z_2} = m – in\], khi đó

    \({z_1} + 2i{z_2} = 3 + 3i \Leftrightarrow \left( {m + 2n} \right) + i\left( {2m + n} \right) = 3 + 3i \Rightarrow \left\{ \begin{array}{l}m + 2n = 3\\2m + n = 3\end{array} \right. \Rightarrow m = n = 1\).

    Do đó \[\left\{ \begin{array}{l}a = – \frac{1}{2}\left( {{z_1} + {z_2}} \right) = – \frac{1}{2}2m = – 1\\{b^2} = {z_1}{z_2} – 2 = {m^2} + {n^2} – 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = – 1\\b = 0\end{array} \right.\,\left( {{\rm{tm}}} \right)\].

    Vậy có ba bộ \(\left( {a\,;\,b} \right)\) thoả mãn yêu cầu bài toán.

    =======

    • lý thuyết
    • trắc nghiệm
    • hỏi đáp
    • bài tập sgk

    Trên tập hợp các số phức, xét phương trình z2 - 2mz + 8m -12 = 0 (m là tham số thực). Có bai nhiều giá trị nguyên của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mản |z1| = |z2|?

    A. 5                 B. 6             C. 3                 D. 4

    Mình cần một câu trả lời cực kì chi tiết ạ, mình cảm ơn trước

    Trên tập hợp các số phức xét phương trình z1=z2

    Các câu hỏi tương tự