Listeria in newborns

1. Gray ML, Killinger AH. Listeria monocytogenes and listeric infections. Bacteriol Rev. 1966;30[2]:309–82. [PMC free article] [PubMed] [Google Scholar]

2. Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Commensal microbes provide first line defense against Listeria monocytogenes infection. J Experiment Med. 2017;214[7]:1973–89. [PMC free article] [PubMed] [Google Scholar]

3. Dalton CB, Austin CC, Sobel J, Hayes PS, Bibb WF, Graves LM, An outbreak of gastroenteritis and fever due to Listeria monocytogenes in Milk. N Engl J Med. 1997;336[2]:100–106. [PubMed] [Google Scholar]

4. Aureli P, Fiorucci GC, Caroli D, Marchiaro G, Novara O, Leone L, An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med. 2000;342[17]:1236–41. [PubMed] [Google Scholar]

5. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev. 2001;14[3]:584–640. [PMC free article] [PubMed] [Google Scholar]

6. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microb Infect. 2007;9[10]:1236–43. [PubMed] [Google Scholar]

7. Lecuit M. Human listeriosis and animal models. Microb Infect. 2007;9[10]:1216–25. [PubMed] [Google Scholar]

8. Pagelow D, Chhatbar C, Beineke A, Liu X, Nerlich A, van Vorst K. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun. 2018;9[1]:4269. [PMC free article] [PubMed] [Google Scholar]

9. Lecuit M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect. 2005;11[6]:430–6. [PubMed] [Google Scholar]

10. Gessain G, Tsai Y-H, Travier L, Bonazzi M, Grayo S, Cossart P, PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. J Experiment Med. 2015;212[2]:165–83. [PMC free article] [PubMed] [Google Scholar]

11. Okike IO, Lamont RF, Heath PT. Do we really need to worry about Listeria in newborn infants? Pediatr Infect Dis J. 2013;32[4]:405–6. [PubMed] [Google Scholar]

12. Madjunkov M, Chaudhry S, Ito S. Listeriosis during pregnancy. Arch Gynecol Obstet. 2017;296[2]:143–52. [PubMed] [Google Scholar]

13. Goulet V, Hebert M, Hedberg C, Laurent E, Vaillant V, De Valk H, Incidence of Listeriosis and Related Mortality Among Groups at Risk of Acquiring Listeriosis. Clin Infect Dis. 2011;54[5]:652–60. [PubMed] [Google Scholar]

14. de Louvois J, Blackbourn J, Hurley R, Harvey D. Infantile meningitis in England and Wales: A two year study. Arch Dis Child. 1991; 66[5]:603–7. [PMC free article] [PubMed] [Google Scholar]

15. Pucci L, Massacesi M, Liuzzi G. Clinical management of women with listeriosis risk during pregnancy: A review of national guidelines. Expert Rev Anti Infect Ther. 2018;16[1]:13–21. [PubMed] [Google Scholar]

16. Posfay-Barbe KM, Wald ER. Listeriosis Seminars Fetal Neonatal Med. 2009;14[4]:228–33. [PubMed] [Google Scholar]

17. McLauchlin J. Human listeriosis in Britain, 1967–85, a summary of 722 cases. 1. Listeriosis during pregnancy and in the newborn. Epidemiol Infect. 1990;104[2]:181–9. [PMC free article] [PubMed] [Google Scholar]

18. Sapuan S, Kortsalioudaki C, Anthony M, Chang J, Embleton ND, Geethanath RM, Neonatal listeriosis in the UK 2004–2014. J Infect. 2017;74[3]:236–42. [PubMed] [Google Scholar]

19. Lamont RF, Sobel J, Mazaki-Tovi S, Kusanovic JP, Vaisbuch E, Kim SK. Listeriosis in human pregnancy: A systematic review. J Perinat Med. 2011;39[3]:227–36. [PMC free article] [PubMed] [Google Scholar]

20. Mateus T, Silva J, Maia RL, Teixeira P. Listeriosis during pregnancy: A public health concern. ISRN Obstet Gynecol. 2013;2013:851712. [PMC free article] [PubMed] [Google Scholar]

21. Rogers HW, Unanue ER. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun. 1993;61[12]:5090–6. [PMC free article] [PubMed] [Google Scholar]

22. Bancroft GJ, Schreiber RD, Unanue ER. Natural Immunity: A T-Cell-Independent Pathway of Macrophage Activation, Defined in the scid Mouse. Immunol Rev. 1991;124[1]:5–24. [PubMed] [Google Scholar]

23. Dunn PL, North RJ. Early gamma interferon production by natural killer cells is important in defense against murine listeriosis. Infect Immun. 1991;59[9]:2892–900. [PMC free article] [PubMed] [Google Scholar]

24. Wherry JC, Schreiber RD, Unanue ER. Regulation of gamma interferon production by natural killer cells in scid mice: Roles of tumor necrosis factor and bacterial stimuli. Infect Immun. 1991; 59[5]:1709–15. [PMC free article] [PubMed] [Google Scholar]

25. Geginat G, Lalic M, Kretschmar M, Goebel W, Hof H, Palm D, Th1 Cells Specific for a Secreted Protein of Listeria monocytogenes Are Protective In Vivo. J Immunol. 1998;160[12]:6046–55. [PubMed] [Google Scholar]

26. Marzo AL, Vezys V, Williams K, Tough DF, Lefrançois L. Tissue-level regulation of Th1 and Th2 primary and memory D4 T cells in response to Listeria infection. J Immunol. 2002;168[9]:4504–10. [PubMed] [Google Scholar]

27. Harty JT, Bevan MJ. Responses of CD8+ T cells to intracellular bacteria. Curr Opin Immunol. 1999;11[1]:89–93. [PubMed] [Google Scholar]

28. Pope C, Kim S-K, Marzo A, Williams K, Jiang J, Shen H, Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol. 2001;166[5]:3402–9. [PubMed] [Google Scholar]

29. Byun HJ, Jung WW, Lee JB, Chung HY, Sul D, Kim SJ. An evaluation of the neonatal immune system using a listeria infection model. Neonatology 2007;92[2]:83–90. [PubMed] [Google Scholar]

30. Pezoldt J, Pasztoi M, Zou M, Wiechers C, Beckstette M, Thierry GR. Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nat Commun. 2018;9[1]:3903. [PMC free article] [PubMed] [Google Scholar]

31. Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Guidelines for the use of flow cytometry and cell sorting in immunological studies [second edition]. Eur J Immunol. 2019; 49[10]:1457–973. [PMC free article] [PubMed] [Google Scholar]

32. Reynders A, Yessaad N, Vu Manh T-P, Dalod M, Fenis A, Aubry C, Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt- lymphoid cells. EMBO J. 2011;30[14]:2934–47. [PMC free article] [PubMed] [Google Scholar]

33. Dulson SJ, Watkins EE, Crossman DK, Harrington LE. STAT4 directs a protective innate lymphoid cell response to gastrointestinal infection. J Immunol. 2019:. [PMC free article] [PubMed] [Google Scholar]

34. Eisenbarth SC. Dendritic cell subsets in T cell programming: Location dictates function. Nat Rev Immunol. 2019;19[2]:89–103. [PMC free article] [PubMed] [Google Scholar]

35. Edelson BT. Dendritic Cells in Listeria monocytogenes Infection. Unanue ER, Advanced Immunology. 113: Academic Press; 2012. p. 33–49. [PubMed] [Google Scholar]

36. Kursar M, Bonhagen K, Kohler A, Kamradt T, Kaufmann SH, Mittrucker HW. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J Immunol. 2002;168[12]:6382–7. [PubMed] [Google Scholar]

37. Pope C, Kim S-K, Marzo A, Williams K, Jiang J, Shen H, Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol. 2001;166[5]:3402–9. [PubMed] [Google Scholar]

38. Fonseca DM, Hand TW, Han SJ, Gerner MY, Glatman Zaretsky A, Byrd AL. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 2015;163[2]:354–66. [PMC free article] [PubMed] [Google Scholar]

39. Renz H, Adkins BD, Bartfeld S, Blumberg RS, Farber DL, Garssen J, The neonatal window of opportunity-early priming for life. J Allergy Clin Immunol. 2018;141[4]:1212–4. [PMC free article] [PubMed] [Google Scholar]

40. Torow N, Hornef MW. The neonatal window of opportunity: Setting the stage for life-long host-microbial interaction and immune homeostasis. J Immunol. 2017;198[2]:557–63. [PubMed] [Google Scholar]

41. Cording S, Wahl B, Kulkarni D, Chopra H, Pezoldt J, Buettner M, The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunol. 2014;7[2]:359–68. [PubMed] [Google Scholar]

42. Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ. Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev. 2008;21[3]: 505–18. [PMC free article] [PubMed] [Google Scholar]

43. Zautner AE, Johann C, Strubel A, Busse C, Tareen AM, Masanta WO. Seroprevalence of campylobacteriosis and relevant post-infectious sequelae. Eur J Clin Microbiol Infect Dis. 2014;33[6]: 1019–27. [PMC free article] [PubMed] [Google Scholar]

44. Keithlin J, Sargeant J, Thomas MK, Fazil A. Systematic review and meta-analysis of the proportion of Campylobacter cases that develop chronic sequelae. BMC Public Health. 2014;14:1203. [PMC free article] [PubMed] [Google Scholar]

45. Hughes RA, Cornblath DR. Guillain-Barre syndrome. Lancet 2005; 366[9497]:1653–66. [PubMed] [Google Scholar]

46. Willison HJ. The immunobiology of Guillain-Barre syndromes. J Peripher Nerv Syst. 2005;10[2]:94–112. [PubMed] [Google Scholar]

47. Esan OB, Pearce M, van Hecke O, Roberts N, Collins DRJ, Violato M. Factors Associated with Sequelae of Campylobacter and Non-typhoidal Salmonella Infections: A Systematic Review. EBioMedicine. 2017;15:100–11. [PMC free article] [PubMed] [Google Scholar]

48. Ajene AN, Fischer Walker CL, Black RE. Enteric pathogens and reactive arthritis: A systematic review of Campylobacter, salmonella and Shigella-associated reactive arthritis. J Health Popul Nutr. 2013; 31[3]:299–307. [PMC free article] [PubMed] [Google Scholar]

Video liên quan

Chủ Đề